UDC 62-50

ON THE CONSTRUCTION OF A STABLE BRIDGE IN A RETENTION GAME

V.I. UKHOBOTOV

A construction procedure is described for a u-stable bridge /l/ in a defferential retention game. Concrete classes of games reducing to a retention game are examined. Examples are presented.

1. Consider a controlled process whose equations of motion are

$$z^{*} = f(t, z, u, v), z \in \mathbb{R}^{n}, u \in U(t), v(t) \in V(t)$$
 (1.1)

A segment I of the real line is prescribed. For each $t \in I$ the sets U(t) and V(t) are compacta in \mathbb{R}^n and depend measurably on t on segment I. A family of sets $W(t) \subset \mathbb{R}^n$ satisfying the closure condition

$$t_i \to t, \ x_i \to x, \ x_i \in W(t_i) \Rightarrow x \in W(t)$$
(1.2)

is prescribed on segment I. An initial position $t_0 \in I$, $z(t_0) \in W(t_0)$ and a number $p > t_0$,

 $p \in I$, are specified. The first player's purpose is to retain, by choosing a control u_i the point z(t) in set W(t) for all $t_0 \leq t \leq p$ for any behavior of the second player. We make the following assumptions regarding the right-hand side of system (1.1): a) for any initial condition $t_1 \in I, z(t_1) \in \mathbb{R}^n$ and any controls $u(t) \in V(t), v(t) \in V(t)$ measurable on segment I the system (1.1) has a unique solution defined on segment I, b) for a control $v(t) \in V(t)$ measurable on I, from every infinite sequence of solutions $z_i(t)$ of system (1.1) with controls $u_i(t) \in U(t)$ and initial conditions $t_i \to t^c$, $z(t_i) \to z^o$ we can pick out a sequence uniformly convergent on I, where the limit function is a solution with the same control v(t) and with some measurable control $u(t) \in U(t)$.

To construct the *u*-stable bridge /1/ corresponding to the problem being examined we use the multivalued mapping introduced in /2/ for stationary games. Let a set $X \subset \mathbb{R}^n$ and a number $t_1 \leqslant \tau$ be specified. Then $T_{t_1}^{\tau}(X)$ is the set of points $z \in \mathbb{R}^n$ for each of which we can find, for any control $v(t) \in V(t)$ measurable on $[t_1, \tau]$, a control $u(t) \in U(t)$ measurable on this interval, such that $z(\tau) \in X$. Here $z(\tau)$ is the value of the solution of system (1.1) with initial conditions $z(t_1) = z$. Under the assumptions made the mapping T has the following properties:

1) if set X is closed, $x_i \to x, t_i \to t, x_i \in T_{t_i}^{\tau}(X)$, then $x \in T_t^{\tau}(X)$;

2) if sets X_i are closed and $X_{i+1} \subset X_i$, then

$$\bigcap_{i>1} T_t^{\tau}(X_i) = T_t^{\tau}(\bigcap_{i>1} X_i);$$

3) if
$$X \subset X_1$$
, then $T_t^{\tau}(X) \subset T_t^{\tau}(X_1)$;

4)
$$T_{t}(X) = X$$

5) the inclusion $T_t^{t_1}(T_{t_1}^{\tau}(X)) \subset T_t^{\tau}(X)$ is fulfilled for any $t \leq t_1 \leq \tau$ and any set $X \subset \mathbb{R}^n$.

For $t \leq p$ we define a family of sets $W^{k}(t)$ by the recurrence relation

$$W^{0}(t) = W(t), \ldots, W^{k}(t) = \bigcap_{t \leq \tau \leq p} T_{t}^{\tau}(W^{k-1}(\tau))$$
(1.3)

The next properties follow from the closure condition (1.2) and the properties of mapping T: 1) the set $W^{k}(t)$ satisfies the closure condition (1.2); 2) $W^{k+1}(t) \subset W^{k}(t)$; 3) $W^{k}(p) = W(p)$.

Lemma 1. Let the initial conditions be such that $z(t_0) \equiv W^{\varepsilon}(t_0)$ for some $k \ge 1$. Then a second player's ε -strategy /2/ exists leading the trajectory z(t) out of the family of sets W(t) by the instant p.

^{*}Prikl.Matem.Mekhan.,45,No.2,p.236-240,1981

Proof. From the lemma's hypothesis and from relations (1.3) it follows that $z(t_0) \cong T_{t_0}^{\tau}(W^{k-1}(\tau))$ for some $t_0 \leq \tau \leq p$. Therefore, the second player can construct a control measurable on interval $[t_0, \tau]$ such that $z(\tau) \equiv W^{k-1}(\tau)$ for any measurable control of the first player. If $\tau = p$, then $z(p) \equiv W(p)$. We need to carry out this argument k times. It can be shown the second player's control construction rule presented is realized by a certain k-strategy whose rigorous formalization is contained in /3/.

For each $t \leqslant p$ we set

$$M(t) = \bigcap_{k \ge 1} W^k(t)$$
 (1.4)

Then, as follows from the properties of $W^k(t)$, the set M(t) satisfies the closure condition (1.2) for $t \leq p$.

Lemma 2. $T_t^{\tau}(M(\tau)) \supset M(t)$ for $t \leqslant \tau \leqslant p$.

Proof. From relations (1.3) and (1.4), the property 2) of mapping T, and the properties of sets $W^k(t)$ it follows that

$$M(t) \subset \bigcap_{k \ge 1} T_t^{\mathsf{T}}(W^{k-1}(\mathfrak{t})) = T_t^{\mathsf{T}}(M(\mathfrak{t})).$$

From the lemmas proved it follows that the family of sets (1.4) is a maximal u-stable bridge in the problem of retention up to instant p.

Corollary. Let a number $k \geqslant 0$ exist such that $W^k(t) \subset W^{k+1}(t)$ for t < p. Then $M(t) = W^k(t)$.

Example. Consider the one-type game with simple motion

$$z' = -u + v, \quad u \in \alpha(t) S, \quad v \in \beta(t) S$$

Here S is a convex compactum in R^n containing the origin, $\alpha(t) \ge 0$ and $\beta(t) \ge 0$ are functions summable on segment /. Then, using the definition of geometric difference $\frac{*}{4}$, we have

$$T_t^{\tau}(\mathbf{X}) = \left(X + \int_t^{\tau} \alpha(\mathbf{r}) \, d\mathbf{r} \, S\right) \, \stackrel{*}{=} \, \int_t^{\tau} \beta(\mathbf{r}) \, d\mathbf{r} \, S \tag{1.5}$$

Let $W(t) = \delta(t) S$, where $\delta(t) \ge 0$ is a function continuous on I. We define the number

$$b = \inf \left\{ t \in I : \delta(\tau) \geqslant \int_{l}^{\tau} (\beta(r) - \alpha(r)) dr, \quad l < \tau \leq p \right\}$$
(1.6)

Then from (1.5) we can obtain that

$$T_{t}^{\tau}(W(\tau)) = \left(\delta(\tau) + \int_{t}^{\tau} (\alpha(r) - \beta(r)) dr\right) S$$

for $b \leq t \leq \tau \leq p$. Consequently,

$$W^{1}(t) = \delta_{1}(t) S, \quad \delta_{1}(t) = \min_{t \leq \tau \leq p} \left(\delta(\tau) + \int_{t}^{\tau} (\alpha(r) - \beta(r)) dr \right)$$
(1.7)

for $b \leq t \leq p$. If t < b, then a number $t < \tau \leq p$ exists for which the set $T_t^{\tau}(W(\tau))$ is empty. Therefore, the set $W^1(t)$ is empty for t < b. By analogous arguments we can prove the equality $W^2(t) = W^1(t)$ for $t \in I$.

Let us prove one further property of sets (1.3) and (1.4), to be used subsequently. Let a sequence of families of sets $W_i(t)$ $(t \in I)$ satisfying the closure condition (1.2) be specified. We set

$$W_0(t) = \bigcap_{i \ge 1} W_i(t)$$

For $W_i(t)$ we construct sets $W_i^k(t)$ and $M_i(t)$ by formulas (1.3) and (1.4) for each i = 0, 1, ...Lemma 3. Let $W_{i+1}(t) \subset W_i(t)$ for $t \leq p$ and for all $i \geq 1$. Then

$$\bigcap_{i \ge 1} W_{0}^{k}(t) = W_{0}^{k}(t), \quad \bigcap_{i \ge 1} M_{i}(t) = M_{0}(t)$$
(1.8)

for $t \leqslant p$.

Proof. At first we show that $W_{i+1}^k(t) \subset W_i^k(t)$. This inclusion is fulfilled when k=0. Suppose that it is fulfilled for k for all $t \in I, t \leq p$. Then

$$W_{i+1}^{k+1}(t) = \bigcap_{t \leq \tau \leq p} T_t^{\tau} (W_{i+1}^k(\tau)) \subset \bigcap_{t \leq \tau \leq p} T_t^{\tau} (W_i^k(\tau)) = W_i^{k+1}(t)$$

By induction on k we prove the first equality in (1.8). It is fulfilled when k=0 . Suppose that it is fulfilled for k. Then from the inclusion proved and from property 3) of mapping T follows

$$\bigcap_{i \ge 1} W_i^{k+1}(t) := \bigcap_{i \ge 1} \bigcap_{t \le \tau \le p} T_t^{\tau}(W_i^k(\tau)) = \bigcap_{t \le \tau \le p} T_t^{\tau}(\bigcap_{i \ge 1} W_i^k(\tau)) \cdots W_0^{k+1}(t)$$

From the proved first equality in (1.8) it follows that

$$M_{0}(t) = \bigcap_{k \ge 1} W_{0}^{k}(t) = \bigcap_{k \ge 1} \bigcap_{i \ge 1} W_{i}^{k}(t) = \bigcap_{k \ge 1} \bigcap_{i \ge 1} W_{i}^{k}(t) - \bigcap_{i \ge 1} M_{i}(t)$$

2. Let us consider the following game: a closed set $Z \subset R^n$, a continuous function g: $Z \times I \rightarrow R$ bounded from below by number γ , and an initial position $t_0 \in I$, $z_0 \in R^n$ are prescribed. The first player's purpose is to retain the point z(t) in set Z up to intstant pand to minimize the quantity

$$\max_{\substack{t \leq t \leq p}} g(z(t), t) \tag{2.1}$$

For each $v \geqslant \gamma$ we define the family of sets

$$W_{\nu}(t) = \{z \in Z : g(z, t) \leqslant \nu\}$$

on segment I. Then for $t_0\leqslant t\leqslant p$ the inclusion $z\left(t
ight)\in W_{
m v}\left(t
ight)$ is equivalent to the requirement that the quantity (2.1) not exceed ν . For each $\nu \geqslant \gamma$ we construct the stable bridge $M_{v}\left(t
ight)$ of (1.4). By $v_{0}=v\left(z_{0},\,t_{0}
ight)$ we denote the lower bound of all numbers $v\geqslant\gamma$ for which

$$z_0 \in M_{\rm v}\left(t_0\right) \tag{2.2}$$

From Lemma 3 it follows that inclusion (2.2) is fulfilled for $v = v_0$. Hence it follows that the first player can make the value of quantity (2.1) no larger than v_0 . We take $v < v_0$. Then inclusion (2.2) is not fulfilled. Therefore, the second player can lead point z(t) out of set $W_v(t)$ by the instant p, i.e. make the value of quantity (2.1) larger than v_i , or lead the point z(t) out of set Z.

Note. We can use sets (1.3) for finding the value $v(z_0, t_0)$ in the game being considered. The numbers $v_k(z_0, t_0)$ are determined analogously. The sequence of these numbers grows and in the limit yields the game's value. Such sequential procedures for constructing the game's value were examined, for example, in /5-7/.

Example. Consider the example from section 1. We define the set $Z \to \bigcup (vS), v \ge 0$. We set $g(z) := \min \{v \ge 0; z \in v S\}$

Then $W_{\nu}(t) = vS$. Therefore, for each $v \ge 0$, setting $\delta(\tau) = v$ in formulas (1.6) and (1.7), we obtain b = b(v), $M_v(t) = vS$ for $b(v) \le t \le p$, and set $M_v(t)$ is empty for t < b(v). Hence it follows that the game's value v_0 for the initial position z_0, t_0 is determined as the least of the numbers $v \ge 0$ for which $b(v) \le t_0$ and $z_0 \in vS$.

Consider the stationary retention game

$$\mathbf{z} = f(\mathbf{z}, u, v), u \in U, v \in V$$

In this case $T_{t}{}^{\tau}(X) = T_{\tau-t}(X)$, where $T_{\sigma}(X)$ is the set of those points z for each of which we can find, for any measurable control $v\left(t
ight) \subset V$, a measurable control $-u\left(t
ight) \subset U$ such that $z(\sigma) \in X$. Here $z(\sigma)$ is the value of the solution of system (2.1) with initial condition z(0) = z. Formulas (1.3) take the form

$${}^{k}(t) = \bigcap_{0 \leq \tau \leq p-t} T_{\tau} \left(W^{k-1} \left(t + \tau \right) \right)$$
(3.1)

In particular, if set W(t) = Z is constant, then

W

$$W^{1}(t) = \bigcap_{0 \leq \tau \leq p-t} T_{\tau}(Z)$$
(3.2)

$$W^{2}(t) = \bigcap_{0 \leqslant \tau \leqslant p-t} T_{\tau} \left(\bigcap_{0 \leqslant \tau \leqslant p-t-\tau} T_{\tau} \left(Z \right) \right)$$
(3.3)

We introduce the multivalued mapping

$$L_{\sigma}(X) = \bigcap_{0 \leqslant \tau \leqslant \sigma} T_{\tau}(X)$$
(3.4)

Theorem. If $L_r(L_\sigma(Z)) \supset L_{r+\sigma}(Z)$ for all $0 \leqslant r \leqslant p, 0 \leqslant \sigma \leqslant p$, then $W^2(t) = W^1(t)$ for $0 \leqslant t \leqslant p$.

Proof. It is enough to show that $W^2(t) \supset W^1(t)$. From equalities (3,2) - (3,4) and the theorem's condition it follows that

$$W^2$$
 $(t) \supset \bigcap_{0 \leq r \leq p-t} L_r (L_{p-t-r} (Z)) \supset L_{p-t} (Z) = W^1 (t)$

Example. Consider the game with simple motion $z^{*} = -u + v$, $u \in U$, $v \in V$. Here U and V are convex compacta in \mathbb{R}^{n} . In this case /2/

$$L_{\sigma}(X) = \bigcap_{0 \leqslant \tau \leqslant 1} \left((X + \tau \sigma U) \stackrel{\bullet}{=} \tau \sigma V \right)$$
(3.5)

Let us show that if Z is a convex set, then the condition of the preceding theorem is fulfilled. First of all, we note that if set X is convex, then so is set (3.5). In addition, it can be shown that

$$L_{\sigma}(X_1 + X_2) \supset L_{\sigma}(X_1) + X_2, L_{\sigma}(\sigma X) = \sigma L_1(X)$$
(3.6)

We take positive numbers r and σ . We set $Y = (r + \sigma)^{-1}Z$, $Z = \sigma Y + rY$. Then

$$L_{\sigma}(Z) \supset \delta L_{1}(Y) + rY$$

 $L_r (L_{\sigma} (Y)) \supset \sigma L_1 (Y) + r L_1 (Y) = (\sigma + r) L_1 (Y) = L_{\sigma + r} ((\sigma + r) Y) = L_{\sigma + r} (Z)$

REFERENCES

- 1. KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games, Moscow, NAUKA, 1974.
- PSHENICHNYI B.N. and SAGAIDAK M.I., On fixed-time differential games. Kibernetika, No.2, 1970.
- PCHENITCHNY /PSHENICHNYI/ B.N., ε-strategies in differential games. In: A. Blaquiere (Ed.), Topics in Differential Games. New York-Amsterdam-London, North-Holland Publ. Co., 1973.
- 4. PONTRIAGIN L.S., On linear differential games. 2. Dokl. Akad. Nauk SSSR, Vol.175, No.4, 1967.
- 5. CHENTSOV A.G., On the structure of a encounter game problem. Dokl. Akad. Nauk SSSR, Vol. 224, No.6, 1975.
- CHENTSOV A.G., On a game problem of encounter at a specified instant. Mat. Sb., Vol.99, No.3, 1976.
- 7. CHISTIAKOV S.V., On solving pursuit game problems. PMM Vol.41, No.5, 1977.

Translated by N.H.C.

172