on the construction of a stable bridge in a retention game*

V.I. UKHOEOTOV

A construction procedure is described for a u-stable bridge /1/ in a defferential retention game. Concrete classes of games reducing to a retention game are examined. Examples are presented.

1. Consider a controlled process whose equations of motion are

$$
\begin{equation*}
z^{*}=f(t, z, u, v), \quad z \in R^{n}, u \in U(t), \quad v(t) \in V(t) \tag{1.1}
\end{equation*}
$$

A segment I of the real line is prescribed. For each $t \in I$ the sets $U(t)$ and $V(t)$ are compacta in R^{n} and depend measurably on t on segment I. A family of sets $W(t) \subset R^{n}$ satisfying the closure condition

$$
\begin{equation*}
t_{i} \rightarrow t, x_{i} \rightarrow x, x_{i} \in W\left(t_{i}\right) \Rightarrow x \in W(t) \tag{1.2}
\end{equation*}
$$

is prescribed on segment I. An initial position $t_{0} \in I, z\left(t_{0}\right) \in W\left(t_{0}\right)$ and a number $p>t_{0}$,
$p \in I$, are specified. The first player's purpose is to retain, by choosing a control u, the point $z(t)$ in set $W(t)$ for all $t_{0} \leqslant t \leqslant p$ for any behavior of the second player. We make the following assumptions regarding the right-hand side of system (1.1): a) for any initial condition $t_{1} \in I, z\left(t_{1}\right) \in R^{n}$ and any controls $u(t) \in V(t), v(t) \in V(t)$ measurable on segment 1 the system (1.1) has a unique solution defined on segment I, b) for a control $v(t) \models$ $V(t)$ measurable on I, from every infinite sequence of solutions $z_{i}(t)$ of system (1.1) with controls $u_{t}(t) \in U(t)$ and initial conditions $t_{i} \rightarrow t^{\circ}, z\left(t_{i}\right) \rightarrow z^{0}$ we can pick out a sequence uniformly convergent on l, where the limit function is a solution with the same control $v(t)$ and with some measurable control $u(t) \in U(l)$.

To construct the u-stable bridge / / / corresponding to the problem being examined we use the multivalued mapping introduced in $/ 2 /$ for stationary games. Let a set $X \subset R^{\prime \prime}$ and a number $t_{1} \leqslant t$ be specified. Then $T_{t_{1}}(X)$ is the set of points $z \in R^{n}$ for each of which we can find, for any control $v(t) \Leftarrow V(t)$ measurable on $\left[t_{1}, \tau\right]$, a control $u(t) \in U(t)$ measurable on this interval, such that $z(\tau) \in X$. Here $z(\tau)$ is the value of the solution of system (1.1) with initial conditions $z\left(t_{1}\right)=z$. Under the assumptions made the mapping T has the following properties:

1) if set X is closed, $\quad x_{i} \rightarrow x, t_{i} \rightarrow t_{1} x_{i} \in T_{t_{i}}{ }^{\pi}(X)$, then $x \in T_{i}{ }^{\pi}(X)$;
2) if sets X_{i} are closed and $X_{i+1} \subset X_{i}$, then

$$
\cap_{i} T_{i}^{\tau}\left(X_{i}\right)=T_{i}^{\top}\left(\cap_{>1} X_{i}\right)
$$

3) if $X \subset X_{1}$, then $T_{i}^{\pi}(X) \subset T_{t}{ }^{t}\left(X_{1}\right)$;
4) $T_{t}{ }^{i}(X)=X$;
5) the inclusion $T_{t}^{t_{1}}\left(T_{t_{1}}{ }^{T}(X)\right) \subset T_{t}{ }^{\pi}(X)$ is fulfilled for any $t \leqslant t_{1} \leqslant i$ and any set $X \subset$ R^{n}.

For $t \leqslant p$ we define a family of sets $W^{k}(t)$ by the recurrence relation

$$
\begin{equation*}
W^{v}(t)=W(t), \ldots, W^{k}(t)=\bigcap_{i \leqslant \tau ; p} T_{1}^{x}\left(W^{k-1}(\tau)\right) \tag{1.3}
\end{equation*}
$$

The next properties follow from the closure condition (1.2) and the properties of mapping T : 1) the set $W^{k}(t)$ satisfies the closure condition (1.2); 2) $\left.W^{k+1}(t) \subset W^{k}(t) ; 3\right) W^{k}(p)=W(p)$.

Lemma 1. Let the initial conditions be such that $z\left(t_{0}\right) 巨 W^{k}\left(t_{0}\right)$ for some $k \geq 1$. Then a second player's ε-strategy / 2 / exists leading the trajectory $z(t)$ out of the family of sets $W(t)$ by the instant p.
*Prikl.Matem.Mekhan., 45,No. 2, p. 236-240, 1981

Proof. From the lemma's hypothesis and from relations (1.3) it follows that $z(t)$) $T_{i_{0}}^{\tau}\left(W^{*-1}(\tau)\right)$ for some $t_{0} \leqslant \tau \leqslant p$. Therefore, the second player can construct a control measurable on interval $\left\{t_{\mathrm{u}}, \tau\right\}$ such that $:(\tau) \equiv W^{k=1}(\tau)$ for any measurable control of the first player. If $\tau=p$, then $z(p)=W(p)$. We need to carry out this argument fimes. It can be shown the second player's control construction rule presented is realized by a certain f-strategy whose rigorous formalization is contained in $/ 3 /$.

For each $t \leqslant p$ we set.

$$
\begin{equation*}
M(i)=\prod_{i>1} W^{k}(i) \tag{1.4}
\end{equation*}
$$

Then, as follows from the properties of $W^{k}(t)$, the set $M(t)$ satisfies the closure condition (1.2) for $t \leqslant p$.

Lemma 2. $T_{t}^{\tau}(M(\tau)) \sqsupseteq M(t)$ for $t \leqslant \tau \leqslant p$.
Proof. From relations (1.3) and (1.4), the property 2) of mapping T, and the properties of sets w^{k} ($)$ it follows that

$$
M(0) \subset_{2} \cap_{\mathrm{E}} T_{t}^{\mathrm{T}}\left(11^{k-1}(\tau)\right) \quad T_{t}^{\mathrm{T}}(M(\tau))
$$

From the lemmas proved it follows that the family of sets (1.4) is a maximal a -stable bridge in the problem of retention up to instant p.

Corollary. Let a number $k \geqslant 0$ exist such that $W^{h}(t) \subset W^{k+1}(t)$ for $t \approx p$ Then $M(t)$ $W^{k}(t)$.

Example. Consider the one-type game with simple motion

$$
z=-a+z, \quad u \in \alpha(t) S, \quad b \in \beta(t) S
$$

Here S is a convex compactum in β^{n} containing the origin, $\alpha(i) \geq 0$ and $\beta(i) \geqslant 0$ arefunctions summable on segment r. Then, using the definition of geometric difference $\# / 4 /$, we have

$$
\begin{equation*}
T_{i}^{x}(X)=\left(X+\int_{t}^{\tau} \alpha(r) d r S\right)=\int_{\dot{E}}^{\tau} \beta(r) d r S \tag{1.5}
\end{equation*}
$$

Let $W(t)-\delta(t) S$, where $\delta(t) \geqslant 0$ is a function continuous on I. We define the number

$$
\begin{equation*}
b=\inf \left\{t=I: \delta(\boldsymbol{r}) \geqslant \int_{i}^{\tau}(\beta(r)-\alpha(r)) d r, \quad \forall<\tau \leqslant r^{\prime}\right\} \tag{1.6}
\end{equation*}
$$

Then from (1.5) we can obtain that

$$
T_{i}^{\tau}(W(r))=\left(\delta(\tau)+\int_{i}^{\tau}(\alpha(r)-\beta(r)) d r\right) s
$$

for $b \leqslant t \leqslant t \leqslant p$. Consequently,

$$
\begin{equation*}
W^{i}(t)-\delta_{1}(t) S, \quad \delta_{1}(t)=\min _{i \leqslant r \leqslant p}\left(\delta(v)+\int_{1}^{\mp}(\alpha(r)-\beta(r)) d r\right) \tag{1.7}
\end{equation*}
$$

for $b \leqslant l \leqslant p$. If $l<\theta$, then a number $t<t \leqslant p$ exists for which the set $r_{i}^{\tau}(H)(\tau)$ is empty. Therefore, the set $W^{1}(t)$ is empty for $t<b$. By analogous arguments we can prove the equality $W^{2}(t) \cdots W^{1}(t)$ for $t \in I$.

Let us prove one further property of sets (1.3) and (1.4), to be used subsequently. Let a sequence of families of sets $W_{i}(t) \quad(t \in I)$ satisfying the closure condition (1.2) be specified. We set

$$
W_{0}(t)=\prod_{i \geqslant 1} W_{i}(t)
$$

For $W_{i}(t)$ we construct sets $W_{i}{ }^{k}(t)$ and $M_{i}(t)$ by formulas (1.3) and (1.4) for each $i=0,1, \ldots$
Lemma 3. Let $W_{i+1}(t) \subset W_{i}(t)$ for $t \leqslant p$ and for all $i \geqslant 1$. Then

$$
\bigcap_{i \geqslant 1} W_{i}^{k}(t)=W_{0}^{k}(t), \quad \bigcap_{i \geqslant 1} M_{i}(t)-M_{0}(t)
$$

for $t \leqslant p$.

Proof. At first we show that $H_{i+1}^{k}(t) こ W_{i}^{k}(t)$. This inclusion is fulfilled when $k=0$. Suppose that it is fulfilled for k for all $t \in I, t \leqslant p$. Then

$$
W_{i+1}^{k+1}(t)=\bigcap_{t \leqslant \tau \leqslant p} T_{t}^{\tau}\left(W_{i+1}^{k}(\tau)\right) \subset \bigcap_{t \leqslant \tau \leqslant p} T_{t}^{\tau}\left(W_{i}^{k}(\tau)\right)=W_{i}^{k+1}(t)
$$

By induction on f we prove the first equality in (1.8). It is fulfilled when $k=0$. Suppose that it is fulfilled for k. Then from the inclusion proved and from property 3) of mapping
T follows

$$
\bigcap_{i \geqslant 1} W_{i}^{k+1}(t)=\bigcap_{i \geqslant 1} \bigcap_{1 \leqslant \tau \leqslant p} T_{i}^{\tau}\left(W_{i}^{k}(\tau)\right)=\bigcap_{t \leqslant \tau \leqslant p} T_{t}^{\top}\left(\bigcap_{i \geqslant 1} W_{i}^{k}(\tau)\right) \ldots W_{n}^{l i+1}(t)
$$

From the proved first equality in (1.8) it follows that

$$
M_{0}(t)=\bigcap_{k \geqslant 1} W_{0}^{k}(t)=\bigcap_{k \geqslant 1} \bigcap_{\geqslant 1} W_{i}^{k}(t)=\bigcap_{k \geqslant 1} \bigcap_{i \geqslant 1} W_{i}^{k}(t)-\bigcap_{i \geqslant 1} M_{i}(t)
$$

2. Let us consider the following game: a closed set $Z \subset R^{n}$, a continuous function g : $Z \times I \rightarrow R$ bounded from below by number γ, and an initial position $t_{0} \in I, z_{0} \in R^{n}$ are prescribed. The first player's purpose is to retain the point $z(t)$ in set Z up to intstant p and to minimize the quantity

$$
\begin{equation*}
\max _{t_{s} \leqslant \leq p} g(z(t), t) \tag{2.1}
\end{equation*}
$$

For each $v \geqslant \gamma$ we define the family of sets

$$
W_{v}(t)=\{z \in Z: g(z, t) \leqslant v\}
$$

on segment I. Then for $t_{0} \leqslant t \leqslant p$ the inclusion $z(t) \in W_{v}(t)$ is equivalent to the requirement that the quantity (2.1) not exceed v. For each $v \geqslant \gamma$ we construct the stable bridge $M_{v}(t)$ of (1.4). By $v_{0}:=v\left(z_{0}, t_{0}\right)$ we denote the lower bound of all numbers $v \geqslant \gamma$ for which

$$
\begin{equation*}
z_{0} \in M_{v}\left(t_{0}\right) \tag{2.2}
\end{equation*}
$$

From Lemma 3 it follows that inclusion (2.2) is fulfilled for $v=v_{0}$. Hence it follows that the first player can make the value of quantity (2.1) no largex than v_{0}. We take $v<v_{0}$. Then inclusion (2.2) is not fulfilled. Therefore, the second player can lead point $z(t)$ out of set $W_{v}(t)$ by the instant $p, i . e$, make the value of quantity (2.1) larger than v, or lead the point $z(t)$ out of set Z.

Note. We can use sets (1.3) for finding the value $v\left(y_{0}, t_{0}\right)$ in the game being considered. The numbers $v_{k}\left(z_{0}, t_{0}\right)$ are determined analogously. The sequence of these numbers grows and in the limit yields the game's value. Such sequential procedures for constructing the game's value were examined, for example, in $/ 5-7 /$.

Example. Consider the example from section 1 . We define the set $\eta, U(v S), v \geqslant 0$. We set

$$
g(z):-\min \{v \geqslant 0: z \in v S\}
$$

Then $W_{v}(l) v S$. Therefore, for each $v \geqslant 0$, setting $\delta(\tau)=v$ in formulas (1.6) and (1.7), we obtain $b \quad b(v), M_{v}(t): v S$ for $b(v) \leqslant t \leqslant p$, and set $M_{v}(t)$ is empty for $t<b(v)$. Hence it follows that the game's value v_{0} for the initial position z_{0}, t_{0} is determined as the least of the numbers $v \geqslant 0$ for which $b(v) \leqslant 10$ and $z_{0} \in v S$.
3. Consider the stationary retention game

$$
\dot{z}=f(z, u, v), u \in U, v \in V
$$

In this case $T_{t}^{\tau}(X)=T_{\tau-1}(X)$, where $T_{\sigma}(X)$ is the set of those points z for each of which we can find, for any measurable control $v(t) \in V$, a measurablc control $u(t) \in U$ such that $z(\sigma) \subseteq X$. Here $z(\sigma)$ is the value of the solution of system (2.1) with initial condition $z(0)=z$. Formulas (1.3) take the form

$$
\begin{equation*}
W^{k}(t)=\bigcap_{0 \leqslant \tau \leqslant p-t} T_{\tau}\left(W^{k-1}(t+\tau)\right) \tag{3.1}
\end{equation*}
$$

In particular, if set $W(t)=Z$ is constant, then

$$
\begin{align*}
& W^{1}(t)=\bigcap_{0 \leqslant \tau \leqslant p-t} T_{\tau}(Z) \tag{3.2}\\
& W^{2}(t)=\bigcap_{0 \leqslant r \leqslant p-t} T_{r}\left(\bigcap_{0 \leqslant \tau \leqslant p-t-r} T_{\tau}(Z)\right) \tag{3.3}
\end{align*}
$$

We introduce the multivalued mapping

$$
\begin{equation*}
L_{\sigma}(X)=\prod_{0 \leqslant \tau \leqslant \sigma} T_{\tau}(X) \tag{3.4}
\end{equation*}
$$

Theorem. If $L_{r}\left(L_{\sigma}(Z)\right) \supset L_{r+\sigma}(Z)$ for all $0 \leqslant r \leqslant p, 0 \leqslant \sigma \leqslant p$, then $W^{2}(t)=W^{1}(t)$ for $0 \leqslant t \leqslant p$.

Proof. It is enough to show that $W^{2}(t) \supset W^{1}(t)$. From equalities (3.2)-(3.4) and the theorem's condition it follows that

$$
W^{2}(t) \supset \bigcap_{0 \leqslant r \leqslant p-t} L_{r}\left(L_{p-t-r}(Z)\right) \supset L_{p-t}(Z)=W^{r}(t)
$$

Example. Consider the game with simple motion $z=-u+r, u \in U, v \in V$. Here U and v are convex compacta in R^{n}. In this case /2/

$$
\begin{equation*}
L_{0}(X)=\bigcap_{0 \leqslant \tau \leqslant 1}((X+\tau \sigma U) \stackrel{*}{ }(\sigma V) \tag{3.5}
\end{equation*}
$$

Let us show that if Z is a convex set, then the condition of the preceding theorem is fulfilled. First of all, we note that if set X is convex, then so is set (3.5). In addition, it can be shown that

$$
\begin{equation*}
L_{\mathrm{v}}\left(X_{1}+X_{2}\right)=L_{\sigma}\left(X_{1}\right)+X_{2}, L_{\sigma}(\sigma X)=\sigma L_{1}(X) \tag{3.6}
\end{equation*}
$$

We take positive numbers r and σ. We set $Y=(r+\sigma)^{-1} Z, Z=\sigma Y+r Y$. Then

$$
\begin{gathered}
L_{\sigma}(Z) \supset \delta L_{1}(Y)+r Y \\
L_{r}\left(L_{\sigma}(Y)\right) \supset \sigma L_{1}(Y)+r L_{1}(Y)=(\sigma+r) L_{1}(Y)=L_{\sigma+r}((\sigma+r) Y)=L_{\sigma+r}(Z)
\end{gathered}
$$

REFERENCES

1. KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games, MOscow, NAUKA, 1974.
2. PSHENICHNYI B.N. and SAGAIDAK M.I., on fixed-time differential games. Kibernetika, No. 2, 1970.
3. PCHENITCHNY /PSHENICHNYI/ B.N., ε-strategies in differential games. In: A. Blaquiere (Ed.), Topics in Differential Games. New York-Amsterdam-London, North-Holland Publ. Co., 1973.
4. PONTRIAGIN L.S., On linear differential games. 2. Dokl. Akad. Nauk SSSR, Vol.175, No.4, 1967.
5. CHENTSOV A.G., On the structure of a encounter game problem. Dokl. Akad. Nauk SSSR, Vol. 224, No.6, 1975.
6. CHENISOV A.G., On a game problem of encounter at a specified instant. Mat. Sb., Vol.99, No. 3, 1976.
7. CHISTIAKOV S.V., On solving pursuit game problems. PMM Vol.41, No.5, 1977.
